8 M ar 1 99 9 Boundedness of Q - Fano varieties with Picard number one

نویسنده

  • Hajime TSUJI
چکیده

We prove birational boundedness of Q-Fano varieties with Picard number one in arbitrary dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A G ] 1 6 M ar 1 99 9 Boundedness of Q - Fano varieties with Picard number one Hajime TSUJI

We prove birational boundedness of Q-Fano varieties with Picard number one in arbitrary dimension.

متن کامل

2 1 M ay 1 99 9 Boundedness of Q - Fano varieties with Picard number one Hajime TSUJI

We prove birational boundedness of Q-Fano varieties with Picard number one in arbitrary dimension.

متن کامل

The Boundedness of Degree of Fano Varieties with Picard Number One

CONTENTS O. Introduction 1. Rational curves 1.1. Deformation theory of morphisms 1.2. Free rational curves 1.3. The invariant d(M) 2. Special subvarieties in Fano varieties of large degree 2.1. The statement 2.2. A Siegel type lemma 2.3. Multiplicity subspaces 2.4. The product theorem, part I 2.S. The product theorem, part II 2.6. The proof 3. The covering lemma 4. Collections of subsets 4.1. B...

متن کامل

Q-factorial Gorenstein Toric Fano Varieties with Large Picard Number

In dimension d, Q-factorial Gorenstein toric Fano varieties with Picard number ρX correspond to simplicial reflexive polytopes with ρX+d vertices. Casagrande showed that any d-dimensional simplicial reflexive polytope has at most 3d vertices, if d is even, respectively, 3d − 1, if d is odd. Moreover, for d even there is up to unimodular equivalence only one such polytope with 3d vertices, corre...

متن کامل

On the Birational Unboundedness of Higher Dimensional Q-fano Varieties

We show that the family of (Q-factorial and log terminal) Q-Fano n-folds with Picard number one is birationally unbounded for n ≥ 6.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999